Spiked Dirichlet Process Priors for Gaussian Process Models.

نویسندگان

  • Terrance Savitsky
  • Marina Vannucci
چکیده

We expand a framework for Bayesian variable selection for Gaussian process (GP) models by employing spiked Dirichlet process (DP) prior constructions over set partitions containing covariates. Our approach results in a nonparametric treatment of the distribution of the covariance parameters of the GP covariance matrix that in turn induces a clustering of the covariates. We evaluate two prior constructions: the first one employs a mixture of a point-mass and a continuous distribution as the centering distribution for the DP prior, therefore, clustering all covariates. The second one employs a mixture of a spike and a DP prior with a continuous distribution as the centering distribution, which induces clustering of the selected covariates only. DP models borrow information across covariates through model-based clustering. Our simulation results, in particular, show a reduction in posterior sampling variability and, in turn, enhanced prediction performances. In our model formulations, we accomplish posterior inference by employing novel combinations and extensions of existing algorithms for inference with DP prior models and compare performances under the two prior constructions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spiked Dirichlet Process Prior for Bayesian Multiple Hypothesis Testing in Random Effects Models.

We propose a Bayesian method for multiple hypothesis testing in random effects models that uses Dirichlet process (DP) priors for a nonparametric treatment of the random effects distribution. We consider a general model formulation which accommodates a variety of multiple treatment conditions. A key feature of our method is the use of a product of spiked distributions, i.e., mixtures of a point...

متن کامل

On Parameter Priors for Discrete DAG Models

We investigate parameter priors for discrete DAG models. It was shown in previous works that a Dirichlet prior on the parameters of a discrete DAG model is inevitable assuming global and local parameter independence for all possible complete DAG structures. A similar result for Gaussian DAG models hinted that the assumption of local independence may be redundant. Herein, we prove that the local...

متن کامل

Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior...

متن کامل

Posterior Consistency of Species Sampling Priors

Recently there has been increasing interest in species sampling priors, the nonparametric priors defined as the directing random probability measures of the species sampling sequences. In this paper, we show that not all of the species sampling priors produce consistent posteriors. In particular, in the class of Pitman-Yor process priors, the only priors rendering posterior consistency are esse...

متن کامل

Slice sampling mixture models

We propose a more efficient version of the slice sampler for Dirichlet process mixture models described by Walker (Commun. Stat., Simul. Comput. 36:45–54, 2007). This new sampler allows for the fitting of infinite mixture models with a wide-range of prior specifications. To illustrate this flexibility we consider priors defined through infinite sequences of independent positive random variables...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of probability and statistics

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010